\(\int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\) [346]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 102 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}+\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \]

[Out]

-(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)+(I*A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))/d/(a+I*b)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3620, 3618, 65, 214} \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {(-B+i A) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}-\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}} \]

[In]

Int[(A + B*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-(((I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d)) + ((I*A - B)*ArcTanh[Sqrt[a +
 b*Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} (A-i B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {(i A-B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}+\frac {(i A+B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d} \\ & = -\frac {(A-i B) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(A+i B) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = -\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}+\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.99 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {i \left (-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}\right )}{d} \]

[In]

Integrate[(A + B*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(I*(-(((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/Sqrt[a - I*b]) + ((A + I*B)*ArcTanh[Sqrt[a +
 b*Tan[c + d*x]]/Sqrt[a + I*b]])/Sqrt[a + I*b]))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1891\) vs. \(2(84)=168\).

Time = 0.50 (sec) , antiderivative size = 1892, normalized size of antiderivative = 18.55

method result size
parts \(\text {Expression too large to display}\) \(1892\)
derivativedivides \(\text {Expression too large to display}\) \(3976\)
default \(\text {Expression too large to display}\) \(3976\)

[In]

int((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

A*(1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)
+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(
d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2+b^
2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^
2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/d/b/(a^2+b^
2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2
+b^2)^(1/2)-2*a)^(1/2))*a^4+3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/
2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2
)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/
4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^
2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)
^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c
))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4/d*b/(a^2+b^2)^(3
/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)
+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2
)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arc
tan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/d/b/(a^2+b^2)^(3
/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)
^(1/2)-2*a)^(1/2))*a^4+3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2
*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a
)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+B/d*(1
/2/(a^2+b^2)^(1/2)*(-1/2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(
1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c)
)^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+1/2/(a^2+b^2)^(1/2)*(1/2*(2*(a^2+b^2)^(
1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*((a^
2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1669 vs. \(2 (79) = 158\).

Time = 0.28 (sec) , antiderivative size = 1669, normalized size of antiderivative = 16.36 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/2*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4
+ 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*
b)*sqrt(b*tan(d*x + c) + a) + ((A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3
)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^
3 - A*B^2)*b^2)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^
4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) + 1/2*sqrt(-((a^2 + b^2)
*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)
) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c)
+ a) - ((A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^
2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*b^2)*d)*sqrt
(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b
^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) + 1/2*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^
2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2
)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + ((A*a^3 + B*a^2*b
 + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*
a^2*b^2 + b^4)*d^4)) - (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*b^2)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-
(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b
 - (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) - 1/2*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b
 + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*l
og((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) - ((A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*s
qrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (2
*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*b^2)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B
 - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/((a^2 +
 b^2)*d^2)))

Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))/sqrt(a + b*tan(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 10.17 (sec) , antiderivative size = 2909, normalized size of antiderivative = 28.52 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

int((A + B*tan(c + d*x))/(a + b*tan(c + d*x))^(1/2),x)

[Out]

2*atanh((8*a*b^2*(- (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1
/2)*(a + b*tan(c + d*x))^(1/2)*(-16*A^4*b^2*d^4)^(1/2))/((16*A^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*b^5*d^4
*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*a^2*b^3*d^4*(-
16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*A^2*b^2*(- (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4))
- (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^
4) + (4*A*b^3*d^2*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*A^2*a^2*b^2*d^2*(- (-16*A^4*b^2*d^4)^(1/
2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*
a*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d
^5)/(a^2*d^4 + b^2*d^4) + (4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*(- (-16*A^4*b^2*d^4)
^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((8*a*b^2*((-16*B^4*b^2*
d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-
16*B^4*b^2*d^4)^(1/2))/((16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*B^3*a^2*b^2*d - 16*B^3*b^4*d + (16*B^3*a
^4*b^2*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d
^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*B^2*b^2*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4
)) + (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B^3*a^2*b^2*d^3)/(a^2*d^4 + b
^2*d^4) - (16*B^3*b^2)/d + (4*B*a*b^2*d^2*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*B^2*a^2*b^2*d^2*
((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c +
d*x))^(1/2))/((16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*B^3*a^2*b^2*d - 16*B^3*b^4*d + (16*B^3*a^4*b^2*d^5
)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^
4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^
2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((32*A^2*b^2*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)
/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^4) - (4*A*b^3
*d^2*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)
) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*A^4*b^2*d^4)^(1/2))/((16*A^3*a*
b^5*d^5)/(a^2*d^4 + b^2*d^4) - (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5
)/(a^2*d^4 + b^2*d^4) - (4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*A^2*a^2*b^2*d^2*(
(-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d
*x))^(1/2))/((16*A^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4) - (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5
) + (16*A^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) - (4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))
*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((32*
B^2*b^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*
tan(c + d*x))^(1/2))/((16*B^3*b^2)/d - (16*B^3*a^2*b^2*d^3)/(a^2*d^4 + b^2*d^4) + (4*B*a*b^2*d^2*(-16*B^4*b^2*
d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2)/(16
*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*B^4*b^2*d^4)^(1/2))/(16*B^3*b^4*d + 16*B^3*a^2*b^
2*d - (16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - (16*B^3*a^4*b^2*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(
-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (
32*B^2*a^2*b^2*d^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1
/2)*(a + b*tan(c + d*x))^(1/2))/(16*B^3*b^4*d + 16*B^3*a^2*b^2*d - (16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) -
(16*B^3*a^4*b^2*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*
B*a*b^4*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2
*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)